

Estudio Propio: MÁSTER EN DATA SCIENCE

Código Plan de Estudios: **EQ17**

Año Académico: 2023-2024

ESTRUCTURA GENERAL DEL PLAN DE ESTUDIOS:							
CLIDEO	Obligatorios		Optativos		Prácticas Externas	TFM/Memoria/ Proyecto	Créditos
CURSO	Créditos	Nº Asignaturas	Créditos	Nº Asignaturas	Créditos	Créditos	Totales
1º	54	9				6	60
2º							
3º							
ECTS TOTALES	54	9				6	60

PROGRAMA TEMÁTICO:					
	ASIGNATURAS OBLIGATORIAS				
Código Asignatura	Curso	Denominación	Carácter OB/OP	Créditos	
705784	1	HERRAMIENTAS DE ANÁLISIS	ОВ	6	
705785	1	TÉCNICAS DE ANÁLISIS ESTADÍSTICO	ОВ	6	
705786	1	TÉCNICAS DE APRENDIZAJE AUTOMÁTICO	ОВ	6	
705787	1	PARALELIZACIÓN DE DATOS	ОВ	6	
705788	1	GESTIÓN Y ALMACENAMIENTO DE DATOS	ОВ	6	
705789	1	VISUALIZACIÓN Y PRESENTACIÓN DE DATOS	ОВ	6	
705791	1	ANALÍTICA ESCALABLE	ОВ	6	
706582	1	PROCESAMIENTO DEL LENGUAJE NATURAL Y COMPUTACIÓN COGNITIVA	ОВ	6	
706583	1	APRENDIZAJE PROFUNDO	ОВ	6	
TRABAJO FIN DE MÁSTER/MEMORIA /PROYECTO					
Código Asignatura	Curso	Denominación	Carácter OB/OP	Créditos	
705792	1	TRABAJO FIN DE MÁSTER	ОВ	6	

Carácter: OB - Obligatoria; OP – Optativa

Año académico	2023-2024		
Estudio	Máster en Data Science (EQ17)		
Nombre de la asignatura	PROCESAMIENTO DEL LENGUAJE NATURAL Y COMPUTACIÓN COGNITIVA		
Carácter (Obligatoria/Optativa)	Obligatoria		
Créditos (1 ECTS=25 horas)	6		
	Presencial		
Madalidad (alagir una angián)	Semipresencial		
Modalidad (elegir una opción)	X On-line		
	A distancia		
Profesor responsable	Elena García-Barriocanal		
Idioma en el que se imparte	Español		

PROFESORES IMPLICADOS EN LA DOCENCIA

Elena García-Barriocanal, Manuel Lucania, Rafael Alcalde

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

- Procesamiento del lenguaje natural: técnicas básicas de tratamiento y preparación de datos.
- Modelos de embedding en lenguaje natural
- Modelos avanzados de Deep Learning para lenguaje natural.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Aplicar métodos y técnicas de procesamiento del lenguaje natural y minería de texto para resolver problemas, extraer información o construir sistemas de etiquetado, valoración o análisis.
- Conocer y saber aplicar modelos del lenguaje parar la resolución de distintas tareas.
- Conocer y saber aplicar las principales técnicas de Deep Learning aplicadas a procesamiento del lenguaje natural y otras tareas de computación cognitiva.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024		
Estudio	Máster en Data Science (EQ17)		
Nombre de la asignatura	HERRAMIENTAS DE ANÁLISIS		
Carácter (Obligatoria/Optativa)	Obligatoria		
Créditos (1 ECTS=25 horas)	6		
	Presencial		
Modalidad (alogir una onción)	Semipresencial		
Modalidad (elegir una opción)	X On-line		
	A distancia		
Profesor responsable	Salvador Sánchez		
Idioma en el que se imparte	Español		

PROFESORES IMPLICADOS EN LA DOCENCIA

Salvador Sánchez, Marçal Mora

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)		
Número de horas presenciales/on-line asistencia profesor	42	
Número de horas de trabajo personal del estudiante	108	
Total horas	150	

CONTENIDOS (Temario)

- Entornos de data science (Python), manejo de matrices, arrays y estructuras de datos tabulares indexadas.
- Gráficos estáticos y estadísticos, estudios exploratorios.
- Tratamiento de datos en diferentes formatos y de diferentes fuentes.
- Limpieza y preparación de datos.
- Análisis de grafos y redes sociales.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Saber utilizar entornos de data science para un amplio rango de tareas analíticas, incluyendo la preparación y transformación de datos.
- Saber comunicar los resultados de diferentes tareas de análisis a través de gráficos y diagramas a diferentes audiencias.
- Aplicar el tratamiento de análisis de redes sociales y sus herramientas al tratamiento de datos relacionales y modelos de red en una variedad de problemas.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024		
Estudio	Máster en Data Science (EQ17)		
Nombre de la asignatura	TÉCNICAS DE ANÁLISIS ESTADÍSTICO		
Carácter (Obligatoria/Optativa)	Obligatoria		
Créditos (1 ECTS=25 horas)	6		
	Presencial		
Modalidad (ologir una onción)	Semipresencial		
Modalidad (elegir una opción)	X On-line		
	A distancia		
Profesor responsable	Miguel-Angel Sicilia		
Idioma en el que se imparte	Español		

PROFESORES IMPLICADOS EN LA DOCENCIA

Miguel-Angel Sicilia, Jose Luis Sánchez Maroñas, Roberto Santamaría, Jordi Gago

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)		
Número de horas presenciales/on-line asistencia profesor	42	
Número de horas de trabajo personal del estudiante	108	
Total horas	150	

CONTENIDOS (Temario)

- Programación estadística con R
- Inferencia estadística, análisis de correlación, análisis de la varianza.
- Modelos lineales.
- Análisis de series temporales.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Aplicar técnicas de análisis estadístico e inferencia a datos de problemas diversos.
- Aplicar técnicas de análisis estadístico avanzado a tareas de modelado sobre datos heterogéneos.
- Aplicar técnicas de análisis de series temporales a problemas concretos.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo

temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024		
Estudio	Máster en Data Science (EQ17)		
Nombre de la asignatura	TECNICAS DE APRENDIZAJE AUTOMÁTICO		
Carácter (Obligatoria/Optativa)	Obligatoria		
Créditos (1 ECTS=25 horas)	6		
	Presencial		
Modalidad (alogir una onción)	Semipresencial		
Modalidad (elegir una opción)	X On-line		
	A distancia		
Profesor responsable	Miguel-Angel Sicilia		
Idioma en el que se imparte	Español		

PROFESORES IMPLICADOS EN LA DOCENCIA

Miguel-Angel Sicilia, Adolfo Sanz, Daniel Rodríguez

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)		
Número de horas presenciales/on-line asistencia profesor	42	
Número de horas de trabajo personal del estudiante	108	
Total horas	150	

CONTENIDOS (Temario)

- Aprendizaje automático aplicado.
- Técnicas de ingeniería de características.
- Principales modelos y técnicas supervisadas, no supervisadas y semi-supervisadas.
- Ensembles
- Selección de modelos.
- Evaluación, pipelines.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Utilizar técnicas, herramientas y algoritmos de aprendizaje automático, supervisado y no supervisado, a la creación de modelos predictivos o de asociación y saber evaluarlos, actualizarlos y desplegarlos.
- Aplicar técnicas de ingeniería de características a problemas concretos.
- Saber seleccionar modelos y construir sistemas que integren diferentes tareas de machine learning.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024		
Estudio	Máster en Data Science (EQ17)		
Nombre de la asignatura	PARALELIZACIÓN DE DATOS		
Carácter (Obligatoria/Optativa)	Obligatoria		
Créditos (1 ECTS=25 horas)	6		
	Presencial		
Madalidad (alagir una angién)	Semipresencial		
Modalidad (elegir una opción)	X On-line		
	A distancia		
Profesor responsable	Salvador Sánchez Alonso		
Idioma en el que se imparte	Español		

PROFESORES IMPLICADOS EN LA DOCENCIA

Salvador Sánchez Alonso, Daniel Burrueco, Iván Robla, Francisco Santamaría Ramos

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)		
Número de horas presenciales/on-line asistencia profesor	42	
Número de horas de trabajo personal del estudiante	108	
Total horas	150	

CONTENIDOS (Temario)

- Ecosistemas de procesamiento paralelo (Hadoop, Spark).
- Herramientas de ingesta y pipelining de datos.
- Tratamiento de datos en streaming.
- Servicios en la nube para analítica.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Saber seleccionar y aplicar tecnologías de paralelización de datos y desarrollar procesamientos paralelos sobre las mismas con los paradigmas más adecuados.
- Saber diseñar soluciones para las problemáticas del procesamiento en tiempo real.
- Saber utilizar servicios y APIs en la nube para el procesamiento de datos en paralelo.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo

temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024
Estudio	Máster en Data Science (EQ17)
Nombre de la asignatura	GESTIÓN Y ALMACENAMIENTO DE DATOS
Carácter (Obligatoria/Optativa)	Obligatoria
Créditos (1 ECTS=25 horas)	6
Modalidad (elegir una opción)	Presencial
	Semipresencial
	X On-line
	A distancia
Profesor responsable	Elena García Barriocanal
Idioma en el que se imparte	Español

PROFESORES IMPLICADOS EN LA DOCENCIA

Elena García Barriocanal, Luis Polanco, Miguel Monzón

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

- Modelos de base de datos NoSQL, tipología, y requisitos de consistencia, disponibilidad y particiones.
- Consultas y definición de datos en diferentes lenguajes.
- Bases de datos analíticas y almacenes de datos.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Saber diseñar bases de datos no convencionales (NoSQL), seleccionando la solución más adecuada para un cierto tratamiento o perfil de aplicación.
- Conocer los principales elementos de lenguajes de consulta.
- Saber utilizar una variedad de bases de datos analíticas para problemas concretos.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo

temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024
Estudio	Máster en Data Science (EQ17)
Nombre de la asignatura	VISUALIZACIÓN Y PRESENTACIÓN DE DATOS
Carácter (Obligatoria/Optativa)	Obligatoria
Créditos (1 ECTS=25 horas)	6
Modalidad (elegir una opción)	Presencial
	Semipresencial
	X On-line
	A distancia
Profesor responsable	Marçall Mora Cantallops
Idioma en el que se imparte	Español

PROFESORES IMPLICADOS EN LA DOCENCIA

Marçall Mora Cantallops, Lidia Cerdán Orts, Pedro Garrido, Pedro Pasquau

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

- Herramientas de visualización de datos.
- Presentaciones de datos.
- Storytelling de datos.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Aplicar técnicas y herramientas de visualización dinámica y estática de datos a una variedad de situaciones, adaptándolas a audiencias y propósitos diversos.
- Aplicar conceptos de visualización a la creación de dashboards.
- Entender y saber aplicar los fundamentos de la visualización de datos a través de herramientas.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024
Estudio	Máster en Data Science (EQ17)
Nombre de la asignatura	APRENDIZAJE PROFUNDO
Carácter (Obligatoria/Optativa)	Obligatoria
Créditos (1 ECTS=25 horas)	6
Modalidad (elegir una opción)	Presencial
	Semipresencial
	X On-line
	A distancia
Profesor responsable	Marçal Mora
Idioma en el que se imparte	Español

PROFESORES IMPLICADOS EN LA DOCENCIA

Marçal Mora, Alberto Torres, Juan Luis Rivero, Ion Carmona

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

- Modelos conexionistas y Deep Learning.
- Optimización y selección de modelos de Deep Learning.
- Modelos de visión artificial y aplicaciones del Deep Learning.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Conocer los fundamentos y técnicas de optimización principales asociadas a los modelos conexionistas.
- Conocer y saber aplicar una variedad de arquitecturas de red profunda.
- Aplicar modelos avanzados de Deep Learning a problemas intensivos en datos, como la visión artificial.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo

temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024
Estudio	Máster en Data Science (EQ17)
Nombre de la asignatura	ANALÍTICA ESCALABLE
Carácter (Obligatoria/Optativa)	Obligatoria
Créditos (1 ECTS=25 horas)	6
Modalidad (elegir una opción)	Presencial
	Semipresencial
	X On-line
	A distancia
Profesor responsable	Miguel-Ángel Sicilia
Idioma en el que se imparte	Español

PROFESORES IMPLICADOS EN LA DOCENCIA

Miguel-Ángel Sicilia, Juan José Sánchez Peña, Manoel Gadi

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

- Machine learning escalable.
- Análisis de grafos escalable.
- Paralelización de procesos de entrenamiento y evaluación.
- Casos de aplicación de técnicas analíticas a recomendadores y análisis de redes sociales

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Diseñar, aplicar y desplegar soluciones de analítica para grandes volúmenes de datos que escalen en clusters de computadoras.
- Aplicar técnicas de aprendizaje automático en entornos de computación con paralelismo.
- Aplicar técnicas de análisis de datos en entornos de computación con paralelismo.

EVALUACIÓN

El programa evalúa los aprendizajes mediante Pruebas de Evaluación Continua (PEC) de carácter teóricopráctico o mediante evaluación por portafolio. Estas pruebas se programan en cada asignatura o grupo temático de asignaturas e incluyen los criterios de evaluación para los mismos.

BIBLIOGRAFÍA

La bibliografía se detalla en el Syllabus de cada módulo dentro de la asignatura, que se proporciona a los estudiantes.

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable

Año académico	2023-2024
Estudio	Máster en Data Science (EQ17)
Nombre de la asignatura	TRABAJO FIN DE MÁSTER
Carácter (Obligatoria/Optativa)	Obligatoria
Créditos (1 ECTS=25 horas)	6
Modalidad (elegir una opción)	Presencial
	X Semipresencial
	X On-line
	A distancia
Profesor responsable	Elena García Barriocanal
Idioma en el que se imparte	Español

PROFESORES IMPLICADOS EN LA DOCENCIA

Todos los miembros del claustro

DISTRIBUCIÓN DE CRÉDITOS (especificar en horas)	
Número de horas presenciales/on-line asistencia profesor	42
Número de horas de trabajo personal del estudiante	108
Total horas	150

CONTENIDOS (Temario)

Propuesta y desarrollo justificado de un proyecto de valor o de innovación, aplicando las competencias adquiridas en el resto del estudio.

COMPETENCIAS ESPECÍFICAS (Indicar un mínimo de tres y máximo de cinco)

- Saber proponer estudios de ciencia de datos y compararlos con estudios previos.
- Saber desarrollar trabajos de ciencias de datos con rigor y atención a la calidad.
- Saber presentar los hallazgos y resultados de estudios de ciencia de atos.

EVALUACIÓN

Los estudiantes elaborarán un trabajo de Data Science que tenga un componente innovador en al menos una de las siguientes áreas: datos utilizados, ingeniería de características o técnicas y métodos aplicados y compararán su resultado con métodos base o disponibles en la literatura. Para ello dispondrán de hitos de

validación de su trabajo personal como forma de tutoría, y redactarán una memoria concisa a modo de informe técnico o artículo conciso resumiendo el trabajo analítico desarrollado con artefactos técnicos (Notebooks, scripts, pipelines)

La evaluación del trabajo final se realiza mediante la defensa del trabajo ante un tribunal compuesto por profesores del programa y expertos en la materia, de manera síncrona o asíncrona. Se valora la documentación aportada, la presentación y la defensa del trabajo, y los criterios de evaluación incluyen la originalidad, la aplicación de conceptos técnicos y la aportación de valor.

BIBLIOGRAFÍA

POSIBLE ADAPTACIÓN CURRICULAR POR CAUSA DE FUERZA MAYOR (COVID-19, ETC.)

No aplicable